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AbbslracL In the many-anyon problem in WO space dimensions, irregular but square 
integrable solutions of the S c h d i n g e r  equation may mist. A class of such solutions is 
constructed for anyons confined in a harmonic oscillator. I1 is shown that these may 
have lower energies than the usual regular solutions. but they do not mist throughout 
the range between the bOsnnic and fermionic limits. and as such do not interpolate 
continuously. 

For a particle moving in a non-singular central potential, the Schrodinger equation 
demands that the wavefunction for a given angular momentum 1 scales as P' or r-('+') 
~ 6, 'PLa "-I...:-- ' I. ̂ ..̂  ,I ".".,. .._..I.,̂ ...̂  ' ..-.....",:.."I.,n -..b. e-- 
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1 = 0. But this is not really a solution [l] of the Schrodinger equation at T = 0, 
since V2(l /r)  gives rise to a delta function. For this reason, the irregular 'solution' 
is excluded from the spectrum of physical states even though the corresponding 
eigenvalue may be lower than the physical ground state (as happens in the case of 
the three dimensional oscillator, for example). 

"U0 Q"lC.0 r--- 
dimensions in the presence of the statistical (anyonic) interaction [2,3]. Tb begin with, 
we note that in two dimensions the wavefunction of two particles with the relative 
coordinate r scales as rl'l or P - 1 ' 1  as P - 0. For 1 = 0 both states coincide and there 
is no irregular solution, while for ) / I  2 1 the irregular solution is not normalizable. 
However if the 'angular momentum' is fractional (and less than one) as in the case of 
fractional statistics !2: 31: we would obtain perfectly valid solutions of the Schrodinger 
equation without the delta function anomalies. These irregular solutions have the 
property that they do not continuously interpolate in energy between the bose and 
the fermi limits as do the solutions which are regular. As we shall show later, 
the class of non-interpolating solutions not only includes the irregular solutions but 
also, in special cases, the regular solutions. It has also been realized [Z] that while 
considering the exchange of two identical particles in a plane, the overlapping point 
T = 0 shoild be excluded from the configuration space. It is the winding around this 
special point r = 0 that leads to fractional statistics. One may suspect, therefore, 

!fl thh p . p  we ifiv.stig.t. !B. properties af such irreg.!zr "%!.tiQfl. 
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that while considering two bosons with the anyonic interaction in two dimensions, 
the irregular but normalizable solutions may have some significance. In this paper, 
however, we argue to the contrary on the basis that these solutions do not interpolate 
continuously between the base and fermi limits. 

We show that even for the N-boson problem confined in a harmonic oscillator 
potential and interacting via the statistical interaction, there exists a class of 
normalizable irregular exact solutions. lb this end, we shall follow the methods 
used earlier to study the regular solutions of the N-anyon problem [4,5l . Unless 
otherwise stated, we assume the states to be bosonic. The N-particle Hamiltonian is 
conveniently written as ( h  = 1) 
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where 

e . .  I J  = ( T i  - T j )  x ( p i  - p j ) .  

The relative angular momentum l i j  may be regarded .as a scalar in two dimensions. 
Hereafter we regard all distances as dimensionless measured in units of 1/+. 
Equivalently we set m = w = 1. In the above the parameter a (0 < a < 1) 
denotes the strength of the statistical interaction and a = 0 corresponds to the non- 
interacting bosonic limit. Note that the statistical interaction is indcpcndcnt of the 
centre of mass. Furthermore, the particles indices j and k can be equal in the last 
term. 

For analytic manipulations it is more convenient to use the complex coordinates, 
zi = z i  + iy,, for solving the eigenvalue equation, H $  = E+. Note that $ 
is symmetric under the exchange of any two particles, and E includes the energy 
of the centre of mass motion. It is of further advantage to make the following 
transformation [410] 

where 

N 

and the overbars denote complex-conjugates. Substituting the expression for $ in the 
eigenvalue equation, we obtain an eigenvalue equation in terms of 7) which is purely 
a function of the relative coordinates. The new eigenvalue equation is then given by 

R q ( 2 . .  I J '  2 % )  * J  = E 7 ) ( Z i j , i i j )  (3) 

E K , - ( N - I ) - O  2 (4) 



Solutions of the many-anyon problem 6165 

Here E,, = E - ECM, with the centre of mass energy subtracted out. Since the 
statistical interaction is independent of the centre of mass motion, it is convenient to 
analyse the eigenvalues and solutions in terms of the relative motion alone. It should 
be remembered that the centre of mass wavefunction q$cM is always regular in two 
space dimensions. The reduced Hamiltonian is given by 

a..  + - 2 8 3 ;  + ziai  + qa; - (a + p) 
i i j  'ij 

Here we use the notation ai = a / a r i ,  a,, = 8, - a,. Note that with the choice 

a * - p = o  P = * a  (6) 

the reduced Hamiltonian I? contains no three-body term, and is linear in a. So long 
as q is non-singular, regular solutions result from the choice a = p [4]. Here we 
concentrate on the second possibility, a = -p in the above equation, which may lead 
to irregular solutions when suitable conditions are imposed on the solution q .  With 
the choice p = -a, A reduces to the form 

The lowest eigenvalue of equation (3), may be found by simply setting 7 to be a 
constant independent of the 2's. Then H q  = 0 identically. As a result E = 0, and 
it follows from equation (4) that 

N ( N  - 1 )  
2 

E,, = ( N  - 1 )  - a  

The corresponding wavefunction with angular momentum L = 0 is given by 

Obviously the energy of the lowest irregular solution decreases linearly with a, 
in contrast to the regular ground state which has the energy eigenvalue E,, = 
( N  - 1 )  + a N (  N - 1 ) / 2 .  (The special case of N = 2, in the context of irregular 
solutions, has also been examined recently 1111.) 

Even though the wavefunction +,, given by equation (9) is an exact N-body 
solution for all a,  the states themselves are not normalizable for all a. Imposing the 
normalizability condition on lo,, given above, we have, by dimension counting 

( 2 N  - 3 )  - a N ( N  - 1 )  > - 1  
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where the first factor is the dimension of the measure and the second factor arises 
from l+E,l*, In terms of a we have 

M V N Murrhy et a/ 

a < 2 / N .  (10) 

Obviously there is no continuous interpolation in energy from the ideal b s e  to the 
ideal fermi limit of the spectrum since a < 1 (ideal fermi limit) for all N .  It is in 
this sense that we refer to this and similar states, as the non-interpolating states. The 
known regular states have the property that they mntinuously interpolate between 
the bose and fermi limits. 

A tower of exact solutions with L = 0 may be constructed through the radial 
excitations of this ground state. lb this end we define a set of ( N  - 1)  relative 
(Jacobi) coordinates [4] 

We choose q of equation (3) to be a polynomial of the form 

When 7 is a solution of the differential equation, the coefficients a& are determined 
by the recursion relation and the normalization mndition. The tower of eigenvalues 
is then given by the expression 

The normalization condition, equation (lo), remains unaltered since as t tends to 
zero, 11 tends to a constant. 

The above discussion was intended to point out the existence of irregular solutions 
whose ground state energy is lower than the regular ground state energy for all a as 
given by equation (10). It  is also important to point out that, by construction, these 
irregular states exist only when a # 0. We now extend the method used above to 
obtain non-interpolating solutions for L # 0. It is, however, not our intention here to 
find the class of all non-interpolating solutions but merely to point out peculiarities 
that may occur when L # 0. In fact, when L # 0, it is possible to find regular 
solutions which are of the non-interpolating type. Consider, for example, a Class Of 
solutions of the form 

Since q is single-valued, l i j  must be a integer, and furthermore I;, is an even integer 
for symmetric states. Alternatively, by choosing l i j  to be odd integers we could form 
a fermionic set of states. The total angular momentum of the state L = ,&j l i j  is 
also an integer . The eigenvalues are now given by 

N ( N  - 1) 
2 E,, = 2 n  + L + ( N  - 
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The normalization condition on the relative wavefunction yields the condition 
2 (N - 1 + L )  

a <  N ( N - I )  
which should be satisfied by any admissible solution in the Hilbert space. Here L 
can take positive or negative integer values such that 0 6 a < 1. Using the above 
condition we may now obtain a classification of various L # 0 states. Complete 
interpolation would require the domain of a to include the point a = 1. This implies 
L > ( N  - 1)( N - 2)/2, and solutions which satisfy this criterion are already known 
in the literature [S, 1. ?he non-interpolating states have L 6 ( N  - 1)(N - 2)/2, 
which, interestingly enough, have both regular and irregular solutions. These non- 
interpolating solutions remain regular in the range 

0 < a 6 Z L / N ( N  - 1) 

and irregular in the range 

2 L / N ( N - 1 )  < a < 2 ( N - 1 +  L ) / N ( N - 1 ) .  

For L < 0 the solutions are necessarily irregular 

6 ~ .  , , I  I I I  I , ?  ~ I (  I ,  I -4 
Regular - 
Irregular- - - j 

Y P 2y 
Figure L l o w  lying regular and irregular solutions 
as a function of 01. The linear solutions are uact ,  
while lhe nonlinear interpolation was obtained 
numerically. The irregular solulions do not exist 
for U > 213. Note lhat U = 0 is the tusanic end 1 

0 and U = 1 is lhe fennionic end of the speclmm. 

~ , , , , , ~ , , , , I  I ,  I ,I>,., , ,  J ~ ~~ 

0 I ..''_-..----. 0.2 0.4 0.6 0.6 

?b summarize, the normahability conditions (IO) and (16) imply that the irregular 
solutions exist only in some limited range of a that shrinks as the number of particles 
N increases. Consequently even for L = 0, there is no continuous interpolation 
between the bose and iermi iimits. A concrete exampie of such behaviour is shown 
in figure 1 for three anyons confined in an oscillator potential. The numerical 
calculations for the low-lying regular interpolating states are well known [12]. We also 
show in the same figure the lowest L = 0 irregular state from the bosonic end that 
exists only for a < 213. The physical requirement that states which exhibit fractional 
statistics should interpolate continuously would exclude these partially interpolating, 
irreyuiar (and reguiar wnen jii f Ci) soiuiions. Tnough ihe eigenvaiue does not 
demand this criterion for solutions, this has to be imposed as an additional physical 
requirement for non-zero a. It is therefore of utmost importance to he aware of 
these solutions in numerical calculations of N-anyon systems (either on a lattice or 
in the presence of some confinement potential) which may yield lower energies, but 
should be excluded by the physical criterion. 
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